Projektarbeit FNK 11

Quartierspeicher
- das Zukunftsmodell für Stadtwerke!

Betrachtung der Wirtschaftlichkeit von Batteriespeichern im Kontext der aktuellen Rahmenbedingungen und daraus resultierende Forderungen an die Politik
Inhaltsverzeichnis

1 Motivation / Einleitung ... 3
2 Grundlagen Batteriespeicher heute - Status Quo 3
2.1 Bleibatterien ... 5
2.2 Lithium-Ionen-Batterien ... 5
2.3 Hochtemperaturbatterien .. 5
2.4 Redox-Flow-Batterien .. 5
2.5 Auswahl der Technik für die weiteren Betrachtungen 5
3 Anwendungsfelder ... 6
3.1 Eigenoptimierung des Stadtwerks .. 6
3.1.1 Reaktion auf den Stromgroßhandel 6
3.1.2 Bereitstellung von Regelenergieleistung 6
3.2 Industriekunden ... 7
3.3 Privathaushalte .. 9
4 Rechtliche Grundlagen ... 10
4.1 Netzgentgelte .. 10
4.2 Netzgentgeltebedingte Abgaben ... 10
4.3 EEG-Umlage .. 10
4.4 Stromsteuer .. 11
4.5 Privatkunden - Speicher in reinen Eigenversorgungskonstellationen 11
4.6 Industriekunde - Spitzenlastgangmanagement 11
4.7 EVU - Netzgekoppelter Speicher / Primärregelenergie 11
4.8 Aussicht: Privatkunden - Quartierspeicher 12
5 Wirtschaftlichkeit .. 13
5.1 Haushaltskunde ... 13
5.2 Industriekunde ... 13
5.3 Stadtwerke Kaiserslautern ... 14
6 Lösung: neues Geschäftsmodell .. 16
7 Forderungen an die Politik ... 18
8 Fazit ... 20
9 Literaturverzeichnis ... 21
1 Motivation / Einleitung

Das Jahr 2017 war mit Blick auf die Energiewende ein Rekordjahr: 38 Prozent der deutschen Stromproduktion kamen aus erneuerbaren Energien - so viel wie nie noch.

Die dadurch zunehmenden Schwankungen der Stromeinspeisung erfordern neue Speichertechnologien und Modelle, die eine Stabilität der Netzfrequenz gewährleisten und eine Überlastung des Stromnetzes vermeiden sollen.

Zusätzlich erhöht ein liberalisierter und deregulierter Energiemarkt den Wettbewerbsdruck, wo durch sich Stadtwerke neu erfinden müssen - vom reinen Energievertrieb und Netzbetreiber, hin zu einem modernen Energiedienstleister mit vielfältigen und innovativen Geschäftsmodellen.

In der folgenden Projektarbeit werden verschiedene Stromspeichertechnologien und -modelle auf ihre Wirtschaftlichkeit und deren Kompatibilität mit den aktuell geltenden Gesetzen am Beispiel der SWK Stadtwerke Kaiserslautern Versorgungs-AG betrachtet. Im Ergebnis wird ein neues Geschäftsmodell für Stadtwerke beleuchtet und die zur Realisierung benötigten rechtlichen Anpassungen als Forderung an die Politik formuliert.

2 Grundlagen Batteriespeicher heute - Status Quo

2.1 Bleibatterien

2.2 Lithium-Ionen-Batterien

Dieser Typ ist aufgrund der Erfahrungen in vielen Industriezweigen bereits sehr weit entwickelt und aktuell Stand der Technik. Auch bei vielen großen Energiespeichersanierungen kommen sie zum Einsatz (vgl. Z.B. eins energet in sachsen GmbH & Co. KG (eins), Thüga Erneuerbare Energien GmbH & Co. KG (THEE, 2017)).

Die Lithium-Ionen-Batterien haben aufgrund ihrer höheren Speicherdichte einen geringen Platzbedarf und keine besonderen Anforderungen an die Aufstellungsraumlichkeiten. Allerdings sollte, um einer möglichen Überhitzung entgegen zu wirken, eine kontinuierliche Temperaturüberwachung installiert werden.

2.4 Redox-Flow-Batterien

Die Betrachtung der Redox-Flow-Batterien zeigt wie die der Hochtemperaturbatterien ein großes Potential für die Zukunft. Derzeit überwiegen jedoch die Nachteile die Vorteile. Positiv bei diesem Batterietyp sind die lange Haltbarkeit und Recyclingfähigkeit des Elektrolyts. Eine Tiefentladung ist ohne Folgen für die Batterie. Die hohen Investitionskosten und die noch nicht weit fortgeschrittene Entwicklung sprechen derzeit leider noch gegen diese Technologie (vgl. (FTE Forschungsstelle für Energiewirtschaft, 2016)).

2.5 Auswahl der Technik für die weiteren Betrachtungen

3 Anwendungsfelder

Durch einen liberalisierten und deregulierten Energiemarkt und dem damit verbundenen Wettbewerbsdruck werden die Stadtwerke gezwungen sich neu zu erfinden. Hin vom reinen Energievertrieb zu einem Energiedienstleister. Um dieser neuen Aufgabe gerecht zu werden, müssen sich die Stadtwerke überlegen, welche neuen Geschäftsfelder sie erschließen können um wegbrechende Erlöse aus dem Vertrieb zu kompensieren. Ein mögliches neues Geschäftsfeld bieten dabei der Einsatz und die Vermarktung von Energiespeichern. Um zielgerichtet am Markt agieren zu können, wird zwischen drei Anwendungsfeldern unterschieden:

3.1 Eigenoptimierung des Stadtwerks

Langfristiges Ziel eines jeden Stadtwerkes ist es, sich weiterhin dauerhaft am Energiemarkt zu etablieren und seinen Fortbestand zu sichern. Hier können Energiespeicher nicht nur im Rahmen neuer Geschäftsfelder und somit der Kundenbindung eingesetzt werden, sondern auch zur Eigenoptimierung genutzt werden. Durch die Optimierung der Energiebeschaffung und -bereitstellung können Kosten reduziert und die Versorgungssicherheit erhöht werden.

3.1.1 Reaktion auf den Stromgroßhandel

3.1.2 Bereitstellung von Regelenergieleistung

Die Übertragungsnetzbetreiber sorgen für ein Leistungsgleichgewicht zwischen Stromerzeugung und -abnahme. Das Stromnetz hat eine Sollfrequenz von 50Hz. Um eine zuverlässige Stromversorgung zu gewährleisten wird diese Frequenz durch die Einspeisung bzw. Abnahme von Regelenergie garantiert. Dabei wird Regelenergie in den Qualitäten Primär-, Sekundär- und Minutenreserveleistung benötigt (vgl. (regelleistung.net, 2017)).

Die Sekundärregelleistung muss vom Übertragungsnetzbetreiber innerhalb von 5 Minuten zur Verfügung gestellt werden um die Primärregelleistung abzulösen.

Darauf folgt die Minutenreserveleistung, die innerhalb von 15 Minuten zur Verfügung steht und eine Frequenzschwankung von bis zu 60 Minuten kompensiert. Einen Überblick zu den drei Regelenergiearten gibt Abbildung 1.

3.2 Industriekunden

Energiespeicher sind für viele Unternehmen eine an Bedeutung gewinnende Möglichkeit zur Kostenreduktion, Erhöhung der Energieeffizienz und Versorgungssicherheit.

Grafische Darstellung Spitzenmanagement:

Abbildung 1: Regelenergieleistung (Bundesnetzagentur, 2017)

Abbildung 2: Spitzenmanagement 2017, Eigene Darstellung
Die Herausforderung dabei ist, die laufende Produktion nicht negativ zu beeinflussen. Der Vorteil eines Batteriespeichers ist, dass dieser zu lastschwachen Zeiten geladen werden kann und die Energie dann für auftretende Leistungsspitzen zur Verfügung steht.

Wir haben die Ersparnis der Lastgangveränderung durch Einsatz eines Batteriespeichers exemplarisch auf Basis der Daten des Frauenhofer Instituts in Kaiserslautern berechnet. Die Leistungsspitze wurde um maximal rund 70 kW reduziert. Hierfür musste der an Wochentagen im Zeitraum von ca. 8:00 bis 19:00 Uhr benötigte Spitzenstrom aus dem Speicher bezogen werden. Aus dem Netz wurde in diesem Zeitraum mit maximal 132 kW Strom begeben. Der dafür benötigte Strom wurde im lastschwachen Zeitraum von ca. 22:00 bis 06:00 Uhr eingespeichert.

Neben der Ersparnis im Netzentgelt, wirkte sich die Lastgangveränderung auch positiv auf den Bezugspreis aus, da der Lastgang sich nun einem Bandverlauf annähert.

3.3 Privathaushalte

Unabhängig von den wirtschaftlichen Überlegungen spielen in diesem Kundensegment...
Die Speicherkapazität ist dabei auf den je-weiligen Bedarf angepasst. Für einen durchschnittlichen 4-Personen-Haushalt mit einem Jahresverbrauch von ca. 4.500 kWh ist eine Größe von 5 kWh ausreichend.

4 Rechtliche Grundlagen

Zum einen werden Speicher gemäß § 33 Nr. 25 EnWG als „Letztverbraucher“ definiert. Jedoch werden Speicher laut § 33 Nr. 15 EnWG auch als „Erzeugungsanlage“ eingestuft.

Experten sind der Meinung, dass sich diese Diskrepanz der Begriffsdefinition derzeit nicht rechtlich auflösen lässt. Eine eigene Definition im Umgang mit der Technologie Speicher würde vieles vereinfachen.

4.1 Netzentgelte

4.2 Netzentgelte be dingte Abgaben

4.3 EEG-Umlage

Im § 61k Abs. 1 EEG ist für Speicher keine Zahlung der EEG-Umlage vorgesehen.

4.4 Stromsteuer

Bei der Stromsteuer ist der Stromerzeuger Steuerschuldner, der die Kosten in der Regel an den Endkunden weitergibt. Gemäß § 9 Abs. 1 Nr. 1 StromStG gilt die vollständige Steuerbefreiung nur, wenn der EEG-Strom den Speicher und das Netz an das dieser ange schlossen ist fließt.

Die Stromsteuer befreit darf laut § 53c EEG nicht mit der EEG-Vergütung kumuliert wer den, weil sich dadurch die Einspeisevergütung um die Höhe der Stromsteuerbefreiung verrin gert. Dies gilt nur für EEG-Strom, der durch ein Netz geleitet worden ist.

Ebenfalls gibt es eine Befreiung von der Strom steuer bei Strom, der in Erzeugungsanlagen mit max. 2 MW Nennleistung erzeugt wird und im räumlichen Zusammenhang zur Anlage vom Betreiber oder Dritten zum Letztverbrauch entnommen wird (§ 9 Abs. 1 Nr. 3 StromStG). Bei der Eigenversorgung auf Speicher ist dies anzuwenden (DIHK - Deutscher Industrie- und Handelskammertag, 2017).

4.5 Privatkunden - Speicher in reinen Eigenversor gungs konstellationen

4.6 Industriekunde - Spitzen lastgangmanagement

4.7 EVU - Netzgekoppelte Speicher / Primärregelenergie

Grundsätzlich kann gespeicherter Strom in das öffentliche Netz eingespeist werden. Hierbei erfolgt der Netzzugang über einen Netzanzugsvertrag oder einen Lieferantenrahmenver trag (§ 3 Absatz 1 Stromnetzzugangsverordnung (StromNZV)).

Bei einem netzgekoppelten Speicher handelt es sich um einen Speicher, einer Strom aus schließlich aus dem öffentlichen Netz bezieht.
und den Strom vollständig wieder ins öffentliche Netz rückgespeist – abzüglich der Speicherverluste.

Für diese Speicher besteht bei den Netzentgelten eine Sonderregelung: Ab dem Zeitpunkt der Inbetriebnahme sind diese für 20 Jahre von den Netzentgelten befreit.

Ob die Freistellung von den Netzentgelten auch für die Konzessionsabgabe und die Umlagen gilt, die mit diesen erhoben werden, ist gerichtlich noch nicht geklärt. Dies betrifft die 519-Umlage, die Umlage für abschaltbare Lasten sowie die Offshore-Haftungsumlage.

Bei positiver Regenergie (Strom, der durch Einspeisung ins öffentliche Netz an Regelenergieteilnehmer), müssen keine Netzentgelte gezahlt werden. Handelt es sich um einen netzgekoppelten Speicher, so werden in diesem Sonderfall sowohl bei der Ein- wie bei der Ausspeicherung keine Netzentgelte fällig.

Aktuell wird das Energie- und Stromsteuerrecht überarbeitet und voraussichtlich wird eine Freistellung von der Stromsteuer bei der Einspeicherung für stationäre Batteriespeicher neu aufgenommen.

4.8 Aussicht: Privatkunden - Quartierspeicher

Fall a) ohne Netzdurchleitung

Fall b) mit Netzdurchleitung

5 Wirtschaftlichkeit

Um die Wirtschaftlichkeit für die drei Anwendungsfelder Stadtwerke, Industriebetriebe und Privathaushalte zu überprüfen, wurde ein vereinfachtes Excel-Tool mit allen relevanten Komponenten entwickelt. In die Wirtschaftlichkeitsbetrachtung fließen neben technischen Vorgaben wie Nennleistung und den daraus resultierenden Investitionskosten und Betriebskosten, auch die Laufzeit, der Eigenkapitalanteil, Fremdkapitalzinssatz und -dauer sowie der Durchschnittliche Jahresgewinn für die Primärregenergie ein. Grundsätzlich ist es möglich mit dem Tool verschiedene Szenarien für unterschiedliche Kunden zu berechnen. Für die Berechnung wurden folgende Annahmen getroffen:

- Laufzeit: 20 Jahre
- Inflationsrate: 2 Prozent/a
- Fremdkapitalzinssatz: 1,5 Prozent/a
- Finanzierungsdauer: 10 Jahre
- Durchschnittlicher Primärregenergiepreis: 2.000 Euro/MW/Je Woche für die Bereitstellung (regelleistung.net, 2017)

5.1 Haushaltsskunde

Für die Berechnung der Haushaltsskunde wurden die oben beschriebenen Parameter herangezogen und die Wirtschaftlichkeit eines Batteriespeichers beim Kunden berechnet. Das Geschäftsmodell sieht vor, dass der Batteriespeicher vom Stadtwerk finanziert und an den Kunden verpachtet wird. Somit soll der Kunde weiterhin an das Stadtwerk gebunden werden.

Damit das Angebot für den Kunden attraktiv ist, sollte die Pacht nicht über die möglichen Einsparung des Kunden liegen. Bei einem jährlichen Stromverbrauch von 3.500 kWh, einer Photovoltaik-Leistung von 10 kWp und einer Speicherleistung von 10 kWh ergibt sich folgende Verbraucherzusammensetzung:

- Netzbezug: 17 Prozent
- Direktverbrauch: 38 Prozent
- Batterienutzung: 45 Prozent

entspricht 1.575 kWh

Eine alternative Lösungsmöglichkeit mit der wir als Stadtwerk dem Haushaltsskunde eine Speicherlösung anbieten können, haben wir unter Punkt 6 erarbeitet.

5.2 Industriekunde

Zunächst betrachten wir die Wirtschaftlichkeit eines Batteriespeichers zur Durchführung eines Spitzenlastmanagements. Beispielfrei reduzieren wir die Spitzen von 203 kW auf 132 kW. Neben dem verminderen Leistungspreis (Netz) in Höhe von 0,255 EUR/Jahr wirkt sich das Lastmanagement auch positiv auf die

Verbrauch: 768,524 MWh/a
Preis Originallautang: 40,79 EUR/kWh
Preis veränderter Lastgang: 39,13 EUR/kWh
Spitze Originallautang: 203,0779 kW
Spitze veränderter Lastgang: 132 kW
Leistungspreis: 116,14 EUR/kW
Einsparungs Arbeitspreis: 1.275,75 €
Einsparungs Leistungspreis: 8.234,99 €
Gesamteinsparung: 9.351,74 €

Für einen Industriekunden der im Gegensatz zum gewählten Beispiel eine hohe Leistung nur über einen kurzen Zeitraum von z.B. einer Stunde benötigt, kann sich im Einzelfall die Wirtschaftlichkeit positiv darstellen. Da der Lastverlauf der Masse der Industriekunden eher dem gewählten Beispiel entspricht, lässt sich hier für uns kein Geschäftsmodell entwickeln aus dem sich eine Win-Win-Situation für Kunden und Stadtwerk ergibt.

Neben dem Lastmanagement kann der Industriekunde mit einem Speicher auch am Regenergiemarkt teilnehmen. Bei erzielbaren Renditen von bis zu 5 % stellt sich diesem allerdings die Frage inwieweit eine Investition in die Ausweitung des primären Geschäfts- betriebs sinnvoller bzw. der Return on Invest ausreichend ist. Wir gehen davon aus, dass er sich auch hinsichtlich des administrativen und regulatorischen Aufwands gegen eine Investition in einen Energiespeicher entscheiden wird.

Da das Lastmanagement über das gesamte Jahr betrieben werden muss um die Spitzen auszugleichen, besteht keine Möglichkeit parallel am Regelenergiemarkt zu partizipieren und ggfs. aus einer Kombination beider Modelle die Wirtschaftlichkeit positiver zu gestalten.

5.3 Stadtwerke Kaiserslautern

Die Wirtschaftlichkeit eines Batteriespeichers wurde am Beispiel Stadtwerke Kaiserslautern beleuchtet. Im Rahmen der Untersuchung wurde die Lithium-Ionen-Batterie für die Bereitstellung der Primärregelleistung im Folgenden näher betrachtet.

Es wurde eine Nennleistung für die Wirtschaftlichkeitsberechnung von knapp 12 MWel. angenommen unter dem Hintergrund, dass bei den Stadtwerken Kaiserslautern noch max. 7 MWel. über das vorhandene Umspannwerk in das SWK-Netz eingespeist werden können. Damit kann SWK für die Primärregelleistung gleichzeitig 5 MWel. positiv und 3 MWel negativ am Primärregelleistungsmarkt anbieten.

Keine Berücksichtigung in der Wirtschaftlichkeitsberechnung finden potenzielle Erlöse aus dem Abruf der Primärregelleistung (elektr. Arbeit) sowie aus der Intraday-Vermarktung des Speichers. Diese wären an top zur hier be- rechneten Wirtschaftlichkeit.

Ergebnis der Wirtschaftlichkeitsberechnung:
(EK 60%; FK-Zins 1,5%)

<table>
<thead>
<tr>
<th>Kostenart</th>
<th>EW</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiekosten</td>
<td>7,5%</td>
<td>7,3%</td>
</tr>
<tr>
<td>Kostensenkung</td>
<td>7,1%</td>
<td>7,5%</td>
</tr>
<tr>
<td>Gesamtkosten</td>
<td>1,7%</td>
<td>1,4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kostenart</th>
<th>EW</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiekosten</td>
<td>7,5%</td>
<td>7,3%</td>
</tr>
<tr>
<td>Kostensenkung</td>
<td>7,1%</td>
<td>7,5%</td>
</tr>
<tr>
<td>Gesamtkosten</td>
<td>1,7%</td>
<td>1,4%</td>
</tr>
</tbody>
</table>

Wie die drei Fallbeispiele gezeigt haben, ist eine Wirtschaftlichkeit zum aktuellen Zeitpunkt nur annähernd für die Stadtwerke gegeben. Der Einsatz von Batteriespeichern in privaten Haushalten und in der Industrie rentiert sich heute noch nicht.
6 Lösung: neues Geschäftsmodell

Um die Netzstabilität zu erhöhen, ist vorgesehen, den Großspeicher an neuralgischen Punkten (idealerweise Trafostationen) als kleinere Einheiten aufzubauen. Damit entsteht eine dezentrale Quartierslösung im Netzgebiet der Stadtwerke. Für die Erbringung der Primärregelleistung werden diese dezentralen Speicher zu einem virtuellen Großspeicher gepoolt.

Die Kapazitätszuordnung pro Kunde wird auf maximal 10 kWh limitiert. Den Kunden werden je nach Szenario 50% bzw. 30% der zugeordneten Speicherkapazität zur Eigenverbrauchsoptimierung vorgehalten, die restliche Kapazität wird vom Stadtwerk zur Primärregelleistung verwendet. Das Pachtentgelt des Kunden richtet sich nach der möglichen Einsparung durch die Eigenverbrauchsoptimierung und kann mit weiteren Angeboten wie Solarerträgen kombiniert werden.

Für alle nachfolgenden Szenarien wurden folgende Grundannahmen getroffen:

<table>
<thead>
<tr>
<th>Gesamtspeichergroße</th>
<th>2,0 MW Nennleistung mit 4 MWh Speicherkapazität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunden:</td>
<td>400 Kunden mit einer Speicherscheibe von je 10 kWh</td>
</tr>
<tr>
<td>Durchschnitt PRL-Erle:</td>
<td>2.000 €/Woche/MW</td>
</tr>
<tr>
<td>Standard-Kunde:</td>
<td>3.500 kWh Jahresverbrauch</td>
</tr>
<tr>
<td>Kosten Strombezugspreis:</td>
<td>30 Cent/kWh</td>
</tr>
<tr>
<td>Erlös Netzeinspeisung:</td>
<td>12,3 Cent/kWh</td>
</tr>
<tr>
<td>Netzentgelte:</td>
<td>Annahme: Netzentgelte entfallen aufgrund der räumlichen Nähe zum Verbraucher sowie die Wirkung zur Netzstabilität (Förderung an die Politik)</td>
</tr>
<tr>
<td>Eigenkapitalanteil:</td>
<td>100%</td>
</tr>
</tbody>
</table>

Zur Ermittlung der Investitionskosten des Lithium-Ionen-Batteriespeichers wurden die in 5,3 genannten Mittelwerte zzgl. einem Zuschlag für dezentrale Quartiersspeichersysteme in Höhe von 25 % herangezogen. Bei allen drei nachfolgend dargestellten Varianten liegen die Investitionskosten bei 2,0 Mio. €.

<table>
<thead>
<tr>
<th>Variante 1: Speicherzuordnung 50% Stadtwerk und 50% Kunde bei 150 € Pachtentgelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Speicherkapazität von 10 kWh wird zu 50 % dem Kunden zur Eigenverbrauchsoptimierung und zu 50 % dem Stadtwerk zur Primärregelleistung zur Verfügung gestellt.</td>
</tr>
<tr>
<td>Zusammensetzung Strombezug beim Kunden:</td>
</tr>
<tr>
<td>- Nettoverbrauch: 26 Prozent</td>
</tr>
<tr>
<td>- Direktverbrauch: 38 Prozent</td>
</tr>
<tr>
<td>- Batterienutzung: 36 Prozent, entspricht 1.260 kWh</td>
</tr>
<tr>
<td>Die mögliche Einsparung für den Kunden durch einen Speicher beträgt 223 €/Jahr, das zu entrichtende Pachtentgelt wird für diese Variante mit 150 € jährlich angesetzt.</td>
</tr>
<tr>
<td>Das Stadtwerk hat Zugriff auf 50 % der Gesamtspeicherleistung, ihm steht somit 1 MW Speicherleistung zur Vermarktung der PRL zur Verfügung.</td>
</tr>
</tbody>
</table>

Ergebnis der Wirtschaftlichkeitsberechnung:

<table>
<thead>
<tr>
<th>Eigenkapital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interner Zinsfuss (Cashflow)</td>
</tr>
<tr>
<td>Interner Zinsfuss (Cashflow)</td>
</tr>
<tr>
<td>Interner Zinsfuss (Cashflow)</td>
</tr>
</tbody>
</table>

Ein wirtschaftlicher Betrieb des Speichers ist unter diesen Bedingungen nicht gegeben.

<table>
<thead>
<tr>
<th>Variante 2: Speicherzuordnung 50% Stadtwerk und 50% Kunde bei 200 € Pachtentgelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie bei Variante 1 beträgt die mögliche Einsparung für den Kunden durch einen Speicher 223 €/Jahr, das zu entrichtende Pachtentgelt wird bei dieser Variante jedoch auf 200 € jährlich angeheben.</td>
</tr>
</tbody>
</table>

Ergebnis der Wirtschaftlichkeitsberechnung:

<table>
<thead>
<tr>
<th>Eigenkapital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interner Zinsfuss (Cashflow)</td>
</tr>
<tr>
<td>Interner Zinsfuss (Cashflow)</td>
</tr>
<tr>
<td>Interner Zinsfuss (Cashflow)</td>
</tr>
</tbody>
</table>

Ein wirtschaftlicher Betrieb des Speichers ist unter diesen Bedingungen nicht gegeben.
Variante 3: Speicherzuordnung 70% Stadtwerk und 30% Kunde bei 150 € Pachtentgelt

Zusammensetzung Strombezug beim Kunden:

- Netzeinspeisung: 37 Prozent
- Direktverbrauch: 38 Prozent
- Batterienutzung: 25 Prozent, entspricht 875 kWh

Die mögliche Einsparung für den Kunden durch einen Speicher beträgt 155 €/Jahr, das zu entrichtende Pachtentgelt liegt bei dieser Variante bei 130 € jährlich.

Ergebnis der Wirtschaftlichkeitsberechnung:

<table>
<thead>
<tr>
<th>Eigenkapital</th>
<th>vor Steuern</th>
<th>nach GewSt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interne Zinsfuss (Cashflow)</td>
<td>1,6%</td>
<td>1,4%</td>
</tr>
</tbody>
</table>

Erst bei dieser Variante zeigt sich eine Annäherung an die Wirtschaftlichkeit des Modells.

7 Forderungen an die Politik

Im Verlauf unserer Betrachtungen zum Thema Energiespeicher und einem zukünftigen Geschäftsfeld für Stadtwerke hat sich gezeigt, dass es von regulatorischer Seite noch viele Unwägbarkeiten bzw. „rechtsfreie“ Bereiche gibt.

Um dies zu gewährleisten, sollten Stadtwerke exklusiv für diese Rolle seitens der Politik als Partner benannt werden. Der daraus resultierende Auftrag an die Stadtwerke bedarf einiger regulatorischer bzw. gesetzlicher Anpassungen, um auch für die Umstrukturierung der Stadtwerke Planungssicherheit zu gewährleisten.

- Schaffung einer einheitlichen energierechtlichen Definition für den Begriff „Speicher“
- Abschaffung der grundsätzlichen Einordnung als Letztverbraucher:
 - Speicher sollten nicht gleichzeitig Erzeugungsanlage und Letztverbraucher sein
 - Grundsätzliche Abschaffung der „Doppelbelastung“ von zwischengespeichertem Strom mit Umlagen
- EEG-Förderung für eingespeicherten und nicht für ausgespeicherten Strom
- Anpassung der Prüfdefinitionskriterien für den Regelenergiemarkt (§§ 6 ff. StromNStV) hinsichtlich Stromspeicher
- Befreiung von Netznutzungsgebühren (Aufgrund der Umstellung von Produktion, Speicherung und Verbrauch)
- Stadtwerke übernehmen das Energiemanagement für z.B. ein Quartier oder eine Quartiersvernetzung
- Stadtwerke optimieren die Steuerung von Energieverbrauchern, -erzeugern und vor allem -speichern
- Klärung der rechtlichen Situation hinsichtlich Ertrags-/Umsatzsteuer zugunsten der Stadtwerke
- Längere Vertragslaufzeiten im Rahmen des Speichervermarktmodells
- Anschubförderung für 10 Pilotprojekte mit Begleitung durch Forschungsinstitute
8 Fazit

Mit einem immer weiter steigendem Anteil an erneuerbaren Energien, die in das deutsche Stromnetz einspeisen wird auch die Bedeutung von Stromspeichern immer größer.

Heute existieren mehrere verschiedene Batteriespeichertechnologien. Dabei zeigt sich das aktuelle Lithium-Ionen-Batterie Batterie-technisch und auch wirtschaftlich die führende Technologie im Markt.

Ferner dürfen jedoch die rechtlichen Rahmenbedingungen nicht außer Acht gelassen werden. So haben Netzentgelte, EEG-Umlage, netzentgelbedingte Abgaben und Stromsteuer einen erheblichen Einfluss auf die Wirtschaftlichkeit von Batteriespeichern.

Zukünftig kann ein Quartierspeicher, der Energie aus verschiedenen Quellen zentral speichert und diese auch wieder an die Verbraucher abgibt an Bedeutung gewinnen. Aktuell ist der Einsatz von Batteriespeichern nur in seltenen Fällen und mit bestimmten Bedingungen wirtschaftlich sinnvoll.

9 Literaturverzeichnis

